Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.413
Filtrar
1.
Carbohydr Polym ; 333: 121978, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494231

RESUMO

Mushroom polysaccharides are recognized as "biological response modifiers". Besides several bioactivities, a growing interest in their prebiotic potential has been raised due to the gut microbiota modulation potential. This review comprehensively summarizes mushroom polysaccharides' biological properties, structure-function relationship, and underlying mechanisms. It provides a recent overview of the key findings in the field (2018-2024). Key findings and limitations on structure-function correlation are discussed. Although most studies focus on ß-glucans or extracts, α-glucans and chitin have gained interest. Prebiotic capacity has been associated with α-glucans and chitin, while antimicrobial and wound healing potential is attributed to chitin. However, further research is of utmost importance. Human fecal fermentation is the most reported approach to assess prebiotic potential, indicating impacts on intestinal biological, mechanical, chemical and immunological barriers. Gut microbiota dysbiosis has been directly connected with intestinal, cardiovascular, metabolic, and neurological diseases. Concerning gut microbiota modulation, animal experiments have suggested proinflammatory cytokines reduction and redox balance re-establishment. Most literature focused on the anticancer and immunomodulatory potential. However, anti-inflammatory, antimicrobial, antiviral, antidiabetic, hypocholesterolemic, antilipidemic, antioxidant, and neuroprotective properties are discussed. A significant overview of the gaps and research directions in synergistic effects, underlying mechanisms, structure-function correlation, clinical trials and scientific data is also given.


Assuntos
Agaricales , Anti-Infecciosos , Microbioma Gastrointestinal , Animais , Humanos , Prebióticos , Polissacarídeos/farmacologia , Polissacarídeos/química , Quitina/farmacologia , Glucanos/farmacologia , Anti-Infecciosos/farmacologia
2.
BMC Cancer ; 24(1): 339, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486205

RESUMO

BACKGROUND: Beta-(1,3)(1,6)-D-glucan is a complex polysaccharide, which is found in the cell wall of various fungi, yeasts, bacteria, algae, barley, and oats and has immunomodulatory, anticancer and antiviral effects. In the present study, we investigated the effect of beta-(1,3)(1,6)-D-glucan derived from yeast on the proliferation of primary NK cells and breast cancer cell lines in 2D and 3D models, and on the cytotoxicity of primary NK cells against breast cancer cell lines in 2D and 3D models. METHODS: In this study, we investigated the effects of different concentrations of yeast-derived beta-(1→3)(1→6)-D-glucan on the proliferation and cytotoxicity of human NK cells and breast cancer cell lines in 2D and 3D models using the XTT cell proliferation assay and the CellTiter-Glo® 2.0 assay to determine the cytotoxicity of human NK cells on breast cancer cell lines in 2D and 3D models. RESULTS: We found that the co-incubation of NK cells with beta-glucan in the absence of IL2 at 48 h significantly increased the proliferation of NK cells, whereas the co-incubation of NK cells with beta-glucan in the presence of IL2 (70 U/ml) increased the proliferation of NK cells but not significantly. Moreover, beta-glucan significantly inhibited the proliferation of breast cancer cell lines in 2D model and induced a weak, non-significant growth inhibitory effect on breast cancer multicellular tumor spheroids (3D). In addition, the cytotoxicity of NK cells against breast cancer cell lines was examined in 2D and 3D models, and beta-glucan significantly increased the cytotoxicity of NK cells against MCF-7 (in 2D). CONCLUSIONS: Yeast derived beta-(1,3)(1,6)-D-glucan could contribute to the treatment of cancer by enhancing NK cell immune response as well as contributing to inhibition of breast cancer cell growth.


Assuntos
Neoplasias da Mama , beta-Glucanas , Humanos , Feminino , Células MCF-7 , Glucanos/farmacologia , Neoplasias da Mama/patologia , Saccharomyces cerevisiae , Interleucina-2 , Células Matadoras Naturais , beta-Glucanas/farmacologia
3.
Int J Pharm ; 655: 123996, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38490404

RESUMO

The immunomodulatory properties of ß-glucans have sparked interest among various medical fields. As vaccine adjuvants, glucan particles offer additional advantages as antigen delivery systems. This study reported the immunomodulatory properties of glucan particles with different size and chemical composition. The effect of glucan microparticles (GPs) and glucan nanoparticles (Glu 130 and 355 NPs) was evaluated on human immune cells. While GPs and Glu 355 NPs demonstrated substantial interaction with Dectin-1 receptor on monocytes, Glu 130 NPs exhibited reduced activation of this receptor. This observation was substantiated by blocking Dectin-1, resulting in inhibition of reactive oxygen species production induced by GPs and Glu 355 NPs. Notably, monocyte-derived dendritic cells (moDCs) stimulated by Glu 355 NPs exhibited phenotypic and functional maturation, essential for antigen cross-presentation. The immunomodulatory efficacy was investigated using an autologous mixed lymphocyte reaction (AMLR), resulting in considerable rates of lymphocyte proliferation and an intriguing profile of cytokine and chemokine release. Our findings highlight the importance of meticulously characterizing the size and chemical composition of ß-glucan particles to draw accurate conclusions regarding their immunomodulatory activity. This in vitro model mimics the human cellular immune response, and the results obtained endorse the use of ß-glucan-based delivery systems as future vaccine adjuvants.


Assuntos
Glucanos , beta-Glucanas , Humanos , Glucanos/farmacologia , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Adjuvantes de Vacinas , beta-Glucanas/farmacologia , beta-Glucanas/química , Antígenos
4.
Int J Biol Macromol ; 260(Pt 2): 129479, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237831

RESUMO

Pullulan is naturally occurring polysaccharide exhibited potential applications for food preservation has gained increasing attention over the last half-century. Recent studies focused on efficient preservation and targeted inhibition using active composite ingredients and advanced technologies. This has led to the emergence of pullulan-based biofilm preservation. This review extensively studied the characteristics of pullulan-based films and coatings, including their mechanical strength, water vapor permeability, thermal stability, and potential as a microbial agent. Furthermore, the distinct characteristics of pullulan, production methods, and activation strategies, such as pullulan derivatization, various compounded ingredients (plant extracts, microorganisms, and animal additives), and other technologies (e.g., ultrasound), are thoroughly studied for the functional property enhancement of pullulan-based films and coatings, ensuring optimal preservation conditions for diverse food products. Additionally, we explore hypotheses that further illuminate pullulan's potential as an eco-friendly bioactive material for food packaging applications. In addition, this review evaluates various methods to improve the efficiency of the film-forming mechanism, such as improving the direct coating process, bioactive packaging films, and implementing layer-by-layer coatings. Finally, current analyses put forward suggestions for future advancement in pullulan-based bioactive films, with the aim of expanding their range of potential applications.


Assuntos
Conservação de Alimentos , Glucanos , Animais , Glucanos/farmacologia , Conservação de Alimentos/métodos , Embalagem de Alimentos/métodos , Permeabilidade
5.
Int J Biol Macromol ; 261(Pt 2): 129755, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278385

RESUMO

Utilizing antibacterial packaging material is an effective approach to delay fruit rotting and spoilage thereby minimizing financial losses and reducing health harm. However, the barrier and mechanical properties of biodegradable antibacterial packaging materials are barely compatible with transparency. Herein, antimicrobial nanoparticles encapsulating citral (ANPs) were first prepared by emulsification under the stabilization of oxidized dextran (ODE) and ethylene diamine. Then, composite films with high transparency, good water vapor barrier, and mechanical and antibacterial properties for fruits packaging were prepared from chitosan (CS), carboxymethyl-glucan (CMG), poly(vinyl alcohol) (PVA), and ANPs by solvent casting strategy. The synergistic effects of electrostatic interaction and hydrogen bonding could regulate crystalline architecture, generating high transparency of the composite films (90 %). The mechanical properties of the composite film are improved with elongation at break up to 167 % and stress up to 32 MPa. The water vapor barrier property of the film is appropriate to the packed fruit for less weight loss and firmness remaining. Simultaneously, the addition of ANPs endowed the film with excellent antimicrobial and UV-barrier capabilities to reduce fruit mildew, thereby extending the shelf life of fruits. More importantly, the composite polymer solution could be sprayed or dipped directly on fruits as a coating for food storage to improve food shelf life, substantially expanding its ease of use and scope of use.


Assuntos
Monoterpenos Acíclicos , Anti-Infecciosos , Quitosana , Nanopartículas , Glucanos/farmacologia , Álcool de Polivinil/química , Quitosana/química , Frutas , Vapor , Embalagem de Alimentos , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Etanol/farmacologia
6.
Fish Shellfish Immunol ; 142: 109142, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37805111

RESUMO

In this study, we investigated the impact of ß-1,3-glucan on the immune responses and gut microbiota of the river prawn (Macrobrachium nipponense) in the presence of Vibrio parahaemolyticus stress. Shrimps were fed one of the following diets: control (G1), 0.2% curdlan (G2), 0.1% ß-1,3-glucan (G3), 0.2% ß-1,3-glucan (G4), or 1.0% ß-1,3-glucan (G5) for 6 weeks and then challenged with V. parahaemolyticus for 96 h. Under Vibrio stress, shrimps in G4 exhibited the highest length gain rate, weight gain rate, and survival rate. They also showed increased intestinal muscle thickness and villus thickness compared to the control and 0.2% curdlan groups. The apoptosis rate was lower in G4 than in the control group, and the digestive enzyme activities (pepsin, trypsin, amylase, and lipase), immune enzyme activities (acid phosphatase, alkaline phosphatase, lysozyme, and phenoxidase), and energy metabolism (triglyceride, cholesterol, glycogen, and lactate dehydrogenase) were enhanced. Expression levels of growth-related genes (ecdysone receptor, calmodulin-dependent protein kinase I, chitin synthase, and retinoid X receptor) and immune-related genes (toll-like receptor 3, myeloid differentiation primary response 88, mitogen-activated protein kinase 7, and mitogen-activated protein kinase 14) were higher in G4 than in the control. Microbiota analysis indicated higher bacterial abundance in shrimps fed ß-1,3-glucan, as evidenced by Sob, Chao1, and ACE indices. Moreover, 0.2% ß-1,3-glucan increased the relative abundances of Bacteroidota and Firmicutes while reducing those of Corynebacteriales and Lactobacillales. In summary, ß-1,3-glucan enhances immune enzyme activities, alters immune-related gene expression, and impacts gut microbial diversity in shrimp. These findings provide valuable insights into the mechanisms underlying ß-1,3 glucan's immune-enhancing effects.


Assuntos
Microbioma Gastrointestinal , Palaemonidae , Penaeidae , Vibrio parahaemolyticus , Animais , Vibrio parahaemolyticus/fisiologia , Imunidade Inata/genética , Glucanos/farmacologia , Dieta/veterinária
7.
Georgian Med News ; (340-341): 71-75, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37805877

RESUMO

In this study, ß- glucan was extracted by the hot water extraction method followed by ethanol precipitation and purified using ion and gel filtration chromatography, then evaluate the anticancer effects of ß- glucan that purified from Phoenix dactylifera on cancer cell line. Ahmed Nahi Glioblastoma Multiform (ANGM) cancer cell line was used in the in vitro study. Cell line exposure times were calculated after 24, 48, and 72 hours in a micro titration plate under absolutely sterile conditions. High molecular weight ß-glucans can be obtained using the hot water extraction method without having to use strong agents to change their structure, like alkalis or acids. Anti-cancer property of ß-glucan derived from Phoenix dactylifera fruits on cancer cell lines has been reported. In this work, the ANGM cell line was treated with different concentrations of ß-glucan (31.25, 62.5, 125, 250, 500 and 1000 µg/mL). and the inhibition of the cells was investigated using the MTT assay after 24, 48 and 72 hours. The result obtained showed time and concentration dependent cytotoxic effect, and the higher concentrations at 48 hrs of exposure gave significantly (p<0.05) higher cytotoxic effect.


Assuntos
Phoeniceae , beta-Glucanas , Glucanos/farmacologia , Glucanos/química , Frutas , beta-Glucanas/farmacologia , beta-Glucanas/química , Água
8.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37834221

RESUMO

Ulcerative colitis (UC), a subtype of inflammatory bowel disease, is a chronic gastrointestinal inflammatory disease with unclear etiology and pathophysiology. Herein, we determined the effects of extracellular polysaccharides purified from Aureobasidium pullulans SM-2001 (Polycan) on tight junction protein expression, inflammation, and apoptosis in a dextran sodium sulfate (DSS)-induced acute colitis model. Fifty mice were divided into normal, DSS, DSS + Polycan 250 mg/kg (Polycan 250), DSS + Polycan 500 mg/kg (Polycan 500), and DSS + 5-aminosalicylic acid 100 mg/kg (5-ASA) groups. Their body weights, colon lengths, histological changes in colon tissue, and tight junction function were observed. Results showed that Polycan 250, Polycan 500, and 5-ASA significantly inhibited body weight loss compared with DSS. Similar to 5-ASA, Polycan 500 exhibited preventive effects on colon length shortening and histological changes in colon tissues. Polycan inhibited the DSS-induced decrease in fluorescein isothiocyanate-dextran permeability and myeloperoxidase activity. Moreover, Polycan significantly recovered serum cytokine (e.g., tumor necrosis factor-α, interleukin (IL)-6, and IL-1ß) or mRNA expression in colon tissue compared with DSS. Polycan also inhibited apoptosis by reducing caspase-3 activity and the Bcl-2 associated X/B-cell lymphoma 2 (Bcl-2) ratio. Additionally, DSS treatment significantly reduced microbial abundance and diversity, but the administration of Polycan reversed this effect. Collectively, Polycan protected intestinal barrier function and inhibited inflammation and apoptosis in DSS-induced colitis.


Assuntos
Colite Ulcerativa , Colite , beta-Glucanas , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Dextranos/metabolismo , Glucanos/farmacologia , Glucanos/metabolismo , beta-Glucanas/farmacologia , beta-Glucanas/metabolismo , Colite/patologia , Colo/patologia , Inflamação/metabolismo , Interleucina-6/metabolismo , Mesalamina , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
9.
Int J Biol Macromol ; 253(Pt 3): 126998, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37729981

RESUMO

CpG oligodeoxynucleotides (CpG ODNs) activate immune system and show strong potential in cancer immunotherapy. However, therapeutic efficacy of CpG ODNs is hampered due to rapid nuclease degradation and insufficient cellular uptake. Delivery of CpG ODNs into antigen presenting cells (APCs) is vital to enhance their therapeutic efficacy. Herein, we developed a super-convenient yet efficient strategy for macrophage-targeted delivery of CpG ODNs and synergistically enhanced cancer immunotherapy. Aminated yeast ß-D-glucan (NH2-Glu) was simply synthesized through functionalization of ß-D-glucan with DETA, which exhibited a dendrimer-like shape with size of about 80 nm. NH2-Glu complexed negatively-charged CpG ODNs. The as-prepared NH2-Glu/CpG complexes were positively charged, uniformly dispersed and exhibited good stability against nuclease degradation. Due to the specific recognition with dectin-1 expressed on macrophages, NH2-Glu/CpG complexes targeted macrophage and exhibited significantly enhanced cellular uptake due to dectin-1-mediated endocytosis. NH2-Glu/CpG complexes showed potent immunostimulatory activity. Contributed by the inherent immunostimulatory and antitumor activity, yeast ß-D-glucan functioned synergistically with CpG ODNs in inducing antitumor immunity. NH2-Glu/CpG complexes remarkably inhibited tumor growth without causing toxic effect. In summary, this work provides a facile yet efficient macrophage-targeted CpG ODNs delivery system for cancer immunotherapy.


Assuntos
Adjuvantes Imunológicos , Neoplasias , Humanos , Adjuvantes Imunológicos/farmacologia , Saccharomyces cerevisiae , Glucanos/farmacologia , Macrófagos , Imunoterapia , Oligodesoxirribonucleotídeos/farmacologia
10.
Biomater Adv ; 154: 213584, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37639855

RESUMO

Pullulan possesses excellent film-forming properties and oxygen isolation capabilities. However, it exhibits limited antibacterial properties and poor water resistance, thereby hindering its application in the field of food preservation. In this study, we synthesized D-arginine-succinic anhydride-pullulan (Arg-SA-Pul) by carboxylating pullulan and subsequently grafting it with D-arginine. The antimicrobial test demonstrated that Arg-SA-Pul exhibited comparable antibacterial activity against Escherichia coli and Staphylococcus aureus. Using Arg-SA-Pul as the primary material and glycerol as the plasticizer, we fabricated an antibacterial film via the tape casting method. The film's light transmittance, water solubility, and water vapor permeability were evaluated. Compared to the natural pullulan film, the Arg-SA-Pul film exhibited lower vapor permeability. Additionally, we conducted preservation tests on cherries by coating them with the Arg-SA-Pul film. The results demonstrated that the Arg-SA-Pul film exhibited a significant preservation effect on cherries and effectively delayed their ripening and senescence. In the future, the Arg-SA-Pul film could be employed as a bacteriostatic preservation material to extend the shelf life of fruits.


Assuntos
Anti-Infecciosos , Embalagem de Alimentos , Embalagem de Alimentos/métodos , Antibacterianos/farmacologia , Glucanos/farmacologia , Ácidos Carboxílicos
11.
Int J Biol Macromol ; 245: 125187, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37276905

RESUMO

Improving the dispersed stability of selenium nanoparticles (SeNPs) is the key to its application. In this study, yeast glucan with different degrees of amination (BNs) were used as stabilizers and capping agent to prepare dispersed SeNPs. The size, storage stability, and morphology of BNs/SeNPs were characterized. Results show that BNs/SeNPs presented positive potential and spherical morphologies with average particle size about 100-300 nm and kept stable at room temperature for a long time. The CCK-8 assay showed that BNs/SeNPs had significantly lower toxicity to RAW264.7 cells than SeNPs. Moreover, BNs/SeNPs could inhibit the generation of NO, IL-1ß and IL-6 effectively in RAW 264.7 macrophages induced by LPS, and down-regulate the mRNA transcription of iNOS, IL-1ß, IL-6 and chemokines (CCL2 and CCL5), indicating that BNs/SeNPs had good anti-inflammatory activity. Therefore, aminated yeast glucan could improve the stability and bioactivity of SeNPs simultaneously, which is a promising stabilizer for SeNPs.


Assuntos
Nanopartículas , Selênio , Selênio/farmacologia , Glucanos/farmacologia , Saccharomyces cerevisiae , Interleucina-6 , Anti-Inflamatórios/farmacologia
12.
Food Funct ; 14(13): 6236-6247, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37350091

RESUMO

Background: Previous studies suggest that when combined with exercise, Aureobasidium pullulans-derived ß-glucan (APßG) may enhance muscle health and fitness profiles because of its ability to improve exercise-induced fatigue and preserve muscle mass. Objectives: The objective was to examine the combined effects and safety of APßG consumption and regular resistance exercise for 12 weeks on muscle strength, biomarkers, and fitness profiles in adults with relatively low skeletal muscle mass. Methods: We conducted a randomized, double-blinded, placebo-controlled trial in adults aged ≥50 years with <110% of the standard lean mass. Eighty participants randomly received either 1000 mg of APßG per day or a placebo for 12 weeks. All participants underwent resistance training three times per week. At baseline and 12 weeks after treatment, we assessed their knee extension/flexion strength, handgrip strength, body composition, and biomarkers. We also evaluated Euro-QoL-5D (EQ-5D) questionnaire, food intake, and physical activity at baseline and 12 weeks after treatment. Results: The combination of APßG and regular resistance exercise over 12 weeks resulted in a higher right knee flexion strength by 4.49 Nm (95% CI; -0.12-8.86 Nm; P = 0.044) than the placebo according to the intention-to-treat analysis. The combination intervention also led to a higher right knee flexion strength of 5.60 Nm (0.18-11.02 Nm; P = 0.043) and left knee flexion strength of 7.25 Nm (0.22-14.28 Nm; P = 0.043) than the placebo according to the per-protocol (PP) analysis. In addition, compared to the placebo, the combined intervention enhanced right-hand grip strength by 1.40 kg (0.19-2.61 kg; P = 0.024) and left-hand grip strength by 1.33 kg (0.01-2.65 kg; P = 0.048) according to PP analysis. The combined intervention also resulted in a more significant reduction in the time required for the 400 m walk test than the placebo. None of the participants experienced adverse events. Conclusion: APßG, in addition to regular resistance exercise, may enhance skeletal muscle strength and fitness in adults with relatively low skeletal muscle mass.


Assuntos
Treinamento de Força , beta-Glucanas , Humanos , Adulto , Força da Mão , Glucanos/farmacologia , beta-Glucanas/farmacologia , Qualidade de Vida , Força Muscular , Exercício Físico/fisiologia , Músculo Esquelético/fisiologia , Composição Corporal , Biomarcadores
13.
Carbohydr Polym ; 313: 120904, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182937

RESUMO

Delayed or chronic wound healing is one of severe clinical issues. Developing scaffold materials capable of supporting cells and inducing tissue regeneration remains a challenge. Here, a polysaccharide-based hydrogel is constructed for promoting full-thickness skin wound healing in mouse model. The engineering hydrogel consists of a dynamic crosslinking network formed by the Schiff base reaction between aldehyde-containing xyloglucan and methacrylated chitosan. Its reversible gel-sol-gel transition upon shearing force is highly beneficial to completely cover and fill irregular wound shape. The second covalent cross-linking network achieved by photo-initiated polymerization offers a feasible way to tune the mechanical property of hydrogel after injection, with an ideal mechanical adaptivity for clinical application. Remarkably, both in vitro and in vivo evaluations demonstrate that the hydrogel with endogenously bioactive galactoside units can promote cell spheroid formation and accelerate wound healing by expediting re-epithelialization, collagen deposition, angiogenesis as well as the formation of hair follicles.


Assuntos
Quitosana , Camundongos , Animais , Quitosana/farmacologia , Hidrogéis/farmacologia , Cicatrização , Glucanos/farmacologia
14.
Fish Shellfish Immunol ; 138: 108848, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37230308

RESUMO

The effects of dietary ß-1,3-glucan on the growth performance, body composition, hepatopancreas tissue structure, antioxidant activities, and immune response of the river prawn (Macrobrachium nipponense) were investigated. In total, 900 juvenile prawns were fed one of five diets with different contents of ß-1,3-glucan (0%, 0.1%, 0.2%, and 1.0%) or 0.2% curdlan for 6 weeks. The growth rate, weight gain rate, specific growth rate, specific weight gain rate, condition factor, and hepatosomatic index of juvenile prawns fed 0.2% ß-1,3-glucan were significantly higher than those fed 0% ß-1,3-glucan and 0.2% curdlan (p < 0.05). The whole-body crude lipid content of prawns supplemented with curdlan and ß-1,3-glucan was significantly higher than that of the control group (p < 0.05). The antioxidant and immune enzyme activities of superoxide dismutase (SOD), total antioxidant capacity (T-AOC), catalase (CAT), lysozyme (LZM), phenoloxidase (PO), acid phosphatase (ACP), and alkaline phosphatase (AKP) in the hepatopancreas of juvenile prawns fed 0.2% ß-1,3-glucan were significantly higher than those of the control and 0.2% curdlan groups (p < 0.05), and tended to increase and then decrease with increasing dietary ß-1,3-glucan. The highest malondialdehyde (MDA) content was observed in juvenile prawns without ß-1,3-glucan supplementation. The results of real-time quantitative PCR indicated that dietary ß-1,3-glucan promoted expression of antioxidant and immune-related genes. Binomial fit analysis of weight gain rate and specific weight gain rate showed that the optimum ß-1,3-glucan requirement of juvenile prawns was 0.550%-0.553%. We found that suitable dietary ß-1,3-glucan improved juvenile prawns growth performance, antioxidant capacity, and non-specific immunity, which provide reference for shrimp healthy culture.


Assuntos
Palaemonidae , Penaeidae , Animais , Antioxidantes/metabolismo , Palaemonidae/genética , Glucanos/farmacologia , Dieta/veterinária , Suplementos Nutricionais/análise , Imunidade Inata , Ração Animal/análise
15.
Food Chem ; 419: 136008, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37004367

RESUMO

The effect of eight different l-amino acids (L-AA) on type-3 resistant starch particles (rSPs) derived from short chain glucan (SCG) was investigated. The L-AA were categorized based on their charge and polarity. The results reveal that positively charged L-AA, such as lysine and arginine, decreased the nucleation and growth rate of rSPs, while non-charged L-AA have negligible effects. Negatively charged L-AA, such as glutamic acid and aspartic acid, had a significant impact on the morphology and crystallinity of the rSPs, resulting in particle size of around 3 µm and crystallinity of around 35%. This implies that charged L-AA influence the arrangement of SCG double helices in the particles. Furthermore, the complexation of SCG with charged L-AA reduced the level of RS in rSPs, indicating that L-AA could be useful in modulating the physical properties and digestibility of rSPs.


Assuntos
Aminoácidos , Amido Resistente , Aminoácidos/metabolismo , Amido Resistente/farmacologia , Cristalização , Ácido Glutâmico/química , Arginina/química , Glucanos/farmacologia , Amido/química , Digestão
16.
Int J Biol Macromol ; 241: 124617, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37119919

RESUMO

Grape seed extract (GSE) was added to pullulan polysaccharide (PP)/xanthan gum (XG) as composite film (PP/XG/GSE or PXG). The observed composite morphology indicated their biocompatibility. Sample PXG100 (contain 100 mg/L GSE) demonstrated the best mechanical properties, with tensile strength of 16.62 ± 1.27 MPa, and the elongation at break of (22.60 ± 0.48)%. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activity of PXG150 were the highest at (81.52 ± 1.57)% and (90.85 ± 1.54)%, respectively. PXG films also demonstrated inhibitory effects on Staphylococcus aureus, Escherichia coli, and Bacillus subtilis. The PXG films could also prolong the shelf life of fresh-cut apples because it could decrease the rate of weight loss and retain more vitamin C and total polyphenol even on the 5th day. The weight loss rate of PXG150 was decreased from (8.58 ± 0.6)% (control) to (4.15 ± 0.19)%. It was able to achieve vitamin C and total polyphenol retention rate of 91 % and 72 %, respectively, which was significantly higher that the control sample. Therefore, GSE had contributed in enhancing the antibacterial, antioxidant properties, mechanical strength, UV protection and water resistance in PXG composite films. This effectively extend the shelf life of fresh-cut apples, which it will be an excellent food packaging material.


Assuntos
Extrato de Sementes de Uva , Malus , Extrato de Sementes de Uva/farmacologia , Embalagem de Alimentos , Glucanos/farmacologia , Ácido Ascórbico , Polifenóis
17.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37047667

RESUMO

This study probed in vitro the mechanisms of competition/coexistence between Streptococcus sanguinis (known for being correlated with health in the oral cavity) and Streptococcus mutans (responsible for aciduric oral environment and formation of caries) by means of quantitative Raman spectroscopy and imaging. In situ Raman assessments of live bacterial culture/coculture focusing on biofilm exopolysaccharides supported the hypothesis that both species engaged in antagonistic interactions. Experiments of simultaneous colonization always resulted in coexistence, but they also revealed fundamental alterations of the biofilm with respect to their water-insoluble glucan structure. Raman spectra (collected at fixed time but different bacterial ratios) showed clear changes in chemical bonds in glucans, which pointed to an action by Streptococcus sanguinis to discontinue the impermeability of the biofilm constructed by Streptococcus mutans. The concurrent effects of glycosidic bond cleavage in water-insoluble α - 1,3-glucan and oxidation at various sites in glucans' molecular chains supported the hypothesis that secretion of oxygen radicals was the main "chemical weapon" used by Streptococcus sanguinis in coculture.


Assuntos
Cárie Dentária , Streptococcus sanguis , Humanos , Streptococcus mutans , Biofilmes , Boca/microbiologia , Glucanos/farmacologia
18.
Sci Rep ; 13(1): 4504, 2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934161

RESUMO

In this study, a powerful and rapid aqueous two-phase system (ATPS) method was used to extract polysaccharides from Codonopsis pilosula. The ATPS process was investigated with response surface methodology (RSM). At an ammonium sulfate concentration of 17%, ethanol concentration of 30%, and extraction temperature of 40 °C at pH 6, the total extraction yield of polysaccharides reached (31.57 ± 1.28)%. After separation and purification, a homogenized polysaccharide CPP 2-4 with molecular weight of 3.9 × 104 kDa was obtained from the bottom phase. The physicochemical properties and structural features confirmed that CPP 2-4 was an α-1,6-glucan. Activity studies showed that the IC50 of CPP 2-4 for DPPH radical scavenging was 0.105 mg/mL. The FRAP and ABTS assays showed that CPP 2-4 had strong antioxidant activity in a dose-dependent manner. Furthermore, CPP 2-4 inhibited NO release in RAW264.7 cells induced by lipopolysaccharide, which indicated a certain anti-inflammatory effect. This study improved the extraction rate of polysaccharides from C. pilosula and identified a glucan for the first time, that can contribute to a better understanding of the composition and structure of polysaccharides from C. pilosula and provide data support for the medicine and food homology of C. pilosula.


Assuntos
Codonopsis , Glucanos , Glucanos/farmacologia , Codonopsis/química , Polissacarídeos/química , Antioxidantes/química , Lipopolissacarídeos/farmacologia , Água/química
19.
Int J Biol Macromol ; 237: 123844, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36858091

RESUMO

Few studies reported the quality evaluation and gut microbiota regulation effect of polysaccharides from Fritillaria species. In this study, polysaccharides extracted from ten Fritillaria species were compared and distinguished through multi-levels evaluation strategy and data fusion. Furthermore, the gut microbiota regulation effect of polysaccharides among different species was analyzed and evaluated. The fingerprint profiling of IR, molecular weight distribution of polysaccharides, chromatogram of partially hydrolyzed polysaccharides (oligosaccharides) and completely hydrolyzed polysaccharides (monosaccharides) were similar, and no exclusive signals were observed. However, the signal strength of functional group, oligosaccharides abundance and monosaccharides proportion showed obvious differences in inter- and intra-species. Glucan may be the main component of polysaccharides in Fritillaria species, CIRR derived from CIR, PRZ, DEL, TAI, UNI possessed higher total polysaccharides content, polymerization degree, oligosaccharides abundance (DP 2-4), and glucose content than the others. Meanwhile, data fusion model was established for identification of affinis and multi-original species, the accuracy of which proved to be 100 %. In addition, Fritillaria polysaccharides could increase the bacterial community richness and diversity, regulate the gut microbiota composition and possessed potential therapeutic effects on gastrointestinal diseases and nervous system diseases.


Assuntos
Fritillaria , Microbioma Gastrointestinal , Polissacarídeos/farmacologia , Glucanos/farmacologia , Monossacarídeos/farmacologia
20.
Biotechnol Appl Biochem ; 70(3): 1371-1383, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36744530

RESUMO

Mutanase (α-1,3-glucanase) is an inducible extracellular enzyme with potential medical applications in dentistry. A novel Cellulosimicrobium funkei strain SNG1 producing mutanase enzyme using α-1,3-glucans was isolated, and the enzyme was optimized for increased productivity using the one-factor-at-a-time approach. Maximum growth and enzyme-specific activity (2.12 ± 0.4 U/mg) were attained in a production medium with pH 7.0 and 1% α-1,3-glucans as carbon source, incubated at 37°C for 30 h. The result showed a five-fold increase in activity compared to unoptimized conditions (0.40 U/mg). The enzyme was purified by gel-filtration chromatography, and recovered with a yield of 29.03% and a specific activity increase of 10.9-fold. The molecular mass of the monomeric enzyme is 137 kDa. The pH and temperature optima are 6.0 and 45°C with Km of 1.28 ± 0.11 mg for α-1,3-glucans. The enzyme activity was stimulated by adding Co2+ , Ca2+ , Cu2+ , and was entirely inhibited by Hg2+ . On 2-h incubation, the purified enzyme effectively degraded in vitro film with an 82.68% degradation rate and a saccharification yield of 30%.


Assuntos
Biofilmes , Glicosídeo Hidrolases , Glicosídeo Hidrolases/química , Glucanos/química , Glucanos/metabolismo , Glucanos/farmacologia , Concentração de Íons de Hidrogênio , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...